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Tang Chao-Tsien

(Sian Chiao-Tung University)

ABSTRACT. An exact solution of vibration modes and transverse
eigenfrequencies of conical shells is studied. Donnell type differen-
tial equations with variable coefficients are used, neglecting the
tangential components of inertia force.

In order to reduce the computing effort, a simplified method is
recommended. When vibrating, the elastic restoring effects in the
shell due to membrane extensional forces and bending (and twisting)
moments are regarded as two springs in parallel. Then this element
of shell is equivalent to the parallel springs system with single
degree of freedom, and the whole shell can be represented by the sum
of infinite systems of this single type, where the stiffness of
springs are functions of the coordinates.

The analytical method presented in this paper can be used for
shells with arbitrary conical angle o and various boundary conditions
(the conditions at the vertex point of complete conical shell are
discussed.)

In this paper the exact solution of the vibrational modes and transverse
vibration eigenfrequencies of conical shells is found analytically. A simpli-
fied calculation method is suggested for practical purposes.

We use thin shell theory type differential equations or Donnell type dif-
ferential equations of motion. Neglecting the tangential components of inertia
forces, we deduce an uncoupled equation for the transverse displacement func-
tion, from which a power series solution for the vibrational mode is obtained.
It is found that the vibrational mode of a conical shell possesses nonperiodic
oscillatory characteristics and a rapidly increasing amplitude.

Owing to the complexity of the above calculations, a simplified method is
suggested. The physical concept is as follows, Figure 2 shows the physical
model constructed for an arbitrary element of the shell. The membrane tension
caused by vibration and the restoring forces caused by bending moments are con-
sidered to be two springs with the spring constants k1 and kz. The element of

the shell has the mass m. In this way we obtain a parallel spring system with
a single degree of freedom. Therefore, the entire shell is equivalent to an
infinite sum of these systems, where the stiffness of the spring is a function

*  Received August 21, 1962. The first draft of this paper was read at the
Chinese Mechanical Institute Plates and Shells Conference in September,
1962,
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~of the coordinates. The eigenfrequencies of this model can be calculated from
kl k2 2 2

a superposition of w™ = Er-+ > -9 + Wy 5 where Wy and w, can be obtained in-

dependently from membrane theory and pure bending theory. The calculations are

greatly simplified and satisfactory results were obtained. A comparison with

experiments is made at the end of this paper.

The present theory can be applied on conical shells with any cone angle.
As a check, we calculated the a = 0 case, which is the circular cylinder. A
simplified method to calculate the vibration of cylindrical shells is also
presented. The treatment of the apex boundary conditions is also discussed.

SYMBOLS

a —- mean radius of cylindrical shell

E — coefficient of elasticity (shell and material)

h -- shell thickness

g —- acceleration of gravity

2 -- height of cylindrical shell

n — eigenvalue of circumferential vibration of conical (cylindrical) shell
(integer)

u, v, w — longitudinal, circumferential, and lateral displacements

U(x), V(x), W(x) —— vibrational mode function

X, ¥, 2 — longitudinal, circumferential, and lateral coordinates of coni-
cal (cylindrical) shell

X, —— the distance measured along a generator between the vertex and the
top (smaller end) of conical shell

x - the distance measured along a generator between the vertex and the
bottom (larger end) of comnical shell

o —-— semi~vertex angle

§ =— circumferential angular coordinate of conical shell (positive direc-
tion counterclockwise)

u — Poisson ratio (shell material)

p — density of shell material

w —-— eigenfrequency (circular frequency)
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Symbols for differential operators:
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1. Introduction

In recent years authors of many countries investigated the problem of
statics of conical shells. However, the dynamical problem is rarely studied,
even for simple problems of line vibrations. As far as the author knows,

Strutt (Ref. 1), in 1933, first studied the vibrations of a conical shell under
the conditions of an undistorted middle plane. However, this is not consistent
with the actual situation. In 1938 Federhofer (Ref. 2), based on Pfliiger's
(Ref. 3) stability analysis of conical shells, derived the general equations for
the vibrations of a conical shell. He used a power function x2(1l - x/xl) as

an approximation to the vibration mode function, and sought solutions using
Rayleigh's method. He also discussed the condition of the undistorted middle
plane. After 1958 Trapezin (Ref. 4, 5) used trigonometric functions as an
approximation to the vibration mode function (same as in the case of cylindri-
cal shell), and used Galerkin's method to solve for axisymmetric vibrations of /135
the conical shell and other problems. In the same year, Herrmann and Mirsky
(Ref. 6) made simiiar investigations. They also used a trigonometric fumction

as the approximate vibration mode and used the Rayleigh-Ritz method to calculate
eigenfrequencies. In addition, they discussed the axisymmetric vibrations under
the assumptions of membrane theory, and introduced some solutions containing
certain special conditions. Obviously, the solutions using trigonometric func-
tions as the approximate vibration mode can only be applied to small cone angles
(cone vertex angle 20 < 30°) and truncated conical shells. The reason for this
is that the lateral vibration mode of a conical shell is not periodic as is the
case for a circular cylindrical shell. In 1960 Alumyae (Ref. 7) investigated

the axisymmetric vibration of a conical shell and discussed the characteristics
and the integration of the differential equations, but he did not go into general
cases. In conclusion, the research on problems of vibrating conical shells is
still considered inadequate. There are also discrepancies in the calculations

of existing work. We cannot present a more detailed discussion here because
until now there exist neither experimental nor more accurate theoretical analyses.

We think that although very accurate results can be obtained by solving
the equations directly, it can be accomplished only under an appropriate choice

3



- of the vibrational mode function. At present there exists no dependable experi-
ment or theory upon which this choice of vibrational mode function can be based.
Due to the mathematical similarities, we refer to the more thoroughly investi-
gated works in the field of instability of conical shells. We should mention
the works of Mushtari and Sachenkov (Ref. 8) who used an interchange of coor-
dinates to obtain a more accurate approximate solution;. Hoff (Ref. 9, 10) under
the assumptions of small cone angles, used a simplified strain-displacement re-
lationship (simpler tham flat shell theory) to derive an independent equation
for an exact solution, but the convergence of his series solution is rather
poor, which limits its practical usefullness. Seide (Ref. 11, 12) went one

step further than (Ref. 8) and worked out numerous solutions. He compared the
forms and results of various approximate solutions of the stability problem.
Other authors used x2 sin (mx/2) power function as the form of approximate
solution in stability calculations. This is also closer to the actual situation
than using trigonometric functions.

The object of the present paper is to obtain a more accurate solution to
the problem of the vibrational modes and eigenfrequencies of a conical shell.
As we all know, it is very difficult to use analytical methods to solve the
general vibrational equations (Ref. 2). The present paper utilizes the flat
shell theory equations (Ref. 15, 16) (circular conical shell is the zero Gaus-
sian curvature shell, this type of equation can be used when n > 2. We also
neglect the tangential components of the inertial forces in the governing equa-

L

tions to facilitate computation . From the viewpoint of order of magnitude
analysis, those terms are indeed higher order terms compared with the terms due
to lateral inertial forces and internal forces, and thus can be neglected.
Besides, from the practical computational view point, we usually neglect these
terms because the longitudinal and circumferential vibrational eigenfrequencies
are much larger than the lateral eigenfrequency. Therefore, the above simplifi-
cation is a reasonable one. After some routine calculations, the final general
analytical solution for the vibration of the conical shell can be applied for
various cone angles, irrespective of whether the cone is truncated or whole
(but n > 2 has to hold). We also suggested the treatment of the boundary condi-
tions at the vertex in the latter case. The results obtained can, of course,
be also applied to the case of a conical shell plate.

Because the general analytical solution is too complicated, this method is
useful in the study of vibrational modes, but not useful in engineering applica-
tions. Therefore, for practical purposes, we also introduced a simplified cal-
culation method.

2, The Basic Equations for the Vibration of a Conical Shell

We adopt a coordinate system x, 9, z which denote, respectively, the gener~
ator direction, the circumferential direction, and the normal direction normal
to the middle plane of the conical shell (a right-handed system). The corres-
ponding displacements are denoted by u, v, w. Note that from now on, w is posi-
tive when directed inwards.

(1)

An independent equation can be derived without neglecting the inertial terms
in the beginning, but neglecting some related small terms in the course of the
differential operation. However, the calculations become very involved.



According to Hooke's law and the results from the integration of stress
along the thickness of the shell (where we have neglected z/(x tg a) in the
integration and we shall discuss the vertex point later), we can obtain the re-
lationships which hold between the internal forces, internal moments and strain,
change of curvature and torsional rate from a consideration of the equilibrium
of an elemental volume on the shell. Then, using the strain-displacement re-
lationship derived by Love (Ref. 17), we can obtain a system of equations
describing the general motion in terms of the displacements. However, we still
cannot solve these differential equations with variable coefficients., There-~
fore, some simplification is necessary. Due to the accuracy required in prac-
tice, one can also make some simplifications, such as neglecting the effect of
the tangential components of the displacements u, v on the change of curvature /136
kx, ke and on the torsional rate 1. In other words, using the conventional

assumptions of torque theory in practical engineering (flat shell theory
[Ref. 15]) we can derive a simplified set of equations describing the general
motion of the shell (frequently called Donnell-type equations):
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We shall discuss briefly the properties of this set of equations. Let us
consider the two limits: (a) As oo + 0, x > », x sin o and x tg a + a, the
above equations reduce to the equations of vibration (Donnell type) for a cir-
cular cylindrical shell with radius a; (b) If we take a - n/2 and for x, let
x sin o > r, x tg a + », and if we utilize the conventional assumptions used
in the calculations of the vibrations of circular plate, i.e., neglecting u, v,
then the equations of vibration for a circular plate can be deduced from equa-
tion (1). Thus, we predict equation (1) can be applied to cases for any angle
a. Note that using flat shell theory or Donnell type equations, the require~

. h h 1 .
ment is X tg o << 1, for example * tg o < 30 ~ 20 (this is also the usual

definition of a "thin" shell). This requirement is satisfied for truncated
conical shells, but obviously cannot be satisfied at the vertex points of whole
conical shells. Equation (1) cannot be valid, even in the vicinity of the
vertex point. Further on, the problem of vibration discussed in this paper
deals with properties of the whole shell, which is different from problems
related to local stresses. From the energy view point, the kinetic and poten-
tial (strain) energy of the region near the vertex due to vibration is very
small compared to the whole shell. Because the region near the vertex which
does not satisfy the thin shell requirement is very small (its volume is about
one percent of the whole) and due to the following calculations and experiments,
the strain of the region near the vertex is also very small. We can say that



. the energy per volume is very small. Thus, in the calculations of vibrations,
the above contradiction should not lead to very large errors in the solution,
and we will apply equation (1) to the calculation of vibration of the whole
shell. The above discussion does not apply for very small cone angles 6uch as

o < 5% = 10°) or very short whole conical shells. Usually these kinds of
conical shells should be regarded as variable cross section columns, and column-
like vibrations should be considered (the case of n = 1). These cases are out
of the scope of the present paper. The following refers only to shell vibrating
situations when n > 2,

3. Solution of the Vibration Equation

If we want to amalytically solve the set of equations (l), an independent
equation should first be derived. Th obtain this, we assume w >> v > u as is
usually done in thin shell studies, and make the assumption that the tangential
inertial forces can be neglected while the lateral inertial forces are retained.
From the form of equations (1), it can be shown that the solution to u, v, w

. . . .m . , . . s
must be in the form of a series in x cos nf sin wt. Substituting this into the
equation, we see that the relative magnitudes of the terms representing the

internal forces can basically be divided into three levels of importance: m

or vz, m or v, and 1. These levels were obtained from a comparison of the terms
representing the same displacement (any one of u, v, w). Furthermore, if we

consider the case w >> v, u, the whole set of equations can be divided into many
more levels of importance (4 - 5 levels). The importance of the inertial forces

1°
eigenfrequency is not too high. At the same time, both v and m have larger
values, at least v or m > 5 - 6 (usually they are both greater than 10). There-
fore, the terms representing the tangential components of the inertial forces

in equations (1) are indeed the highest order small terms, and can be neglected
without noticeable errors in the solutions for the vibrational modes and the

. PP
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lateral eigenfrequencies.

2
is represented by Eilgé—k—l w?x?. This is always smaller than 1 if the lateral /137

In addition, in the calculations we substitute (I + u) for the coefficient
G - u)/2 which appear in the first and second equations of the set of equations
in (1). (We also point out that these terms were neglected by the small cone
angle assumption in (Ref. 9). From the order of magnitude analysis, this does
not seem to be reasonable.,) When p = 1/3, this substitution is entirely correct.
From solid state physics research, it follows that the Poisson ratio of common
metals lies in the vicinity of 1/3. (aluminum, titanium or copper alloys). Note
that the terms with the coefficient (3- u)/2 are of medium importance (v level)
in the equations. Thus, if there were slight discrepancies in the coefficients,
the effect on the entire calculation is small (about the same error as in
neglecting the tangential component of the inertia forces). Thus, even if the
material property u < 0.30 or > 0.40, the above substitution is still allowable.

With the above assumptions, we also assume solutions of the form



u = U(x) cos nf sin we,
v = V(%) sin n0sin ¢, (2)

w = W{x) cosnf sin we,

Then equations (1) reduce into the following set of equations:

Ao(sz)—--—Ao( 2U) + =~ U+(1—*2'£‘-)v~A(%)—-‘ |
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Using the differential operator A on equation (3b) and substituting the

value of A(-EE> from equation (3a), after some algebra we obtain the coupled
be

equations for U and W (which is then multiplied by>x2) Then we multiply
equatlon (3a) by x4, differentiate with respect to AO’ and substitute the value
of A (x U) into the equation. There result the following coupled equations
for V and W:

L) =L aw) — awm)) - LA w) —wl + .

ga tga v
+t8—;A(W)—(1—2_"—#)é’—;W, | (4a)

L) = (ﬁﬁ)— [pA (W) = (1 — 2w)A(W) — 2W1 -
—(1_2.F)—[A’(W)—W]+;W _ (4b)

After applying the operator L to equation (3c), we substitute equations (4a)
and (4b), and note that
L[a]l=A[L],

Then an independent (uncoupled) equation for the lateral vibrational mode func- /138
tion W(x) is obtained:

A4 L 2 — Qg a
[Af— AP+ e + 20 — L2 v29i(Ww)] = )L( zW) (4e)

For this differential equation with variable coefficients we assume a power
series type solution:



W(x) = x' g C:x‘ = g Clx’+,- (5)

Substituting the above equation into equation (4c), an indicial equation is ob-

tained:
|

(r‘-—v’)[(r—z)’——v’][(r—-2)‘—2(v’+1)(r——2)2+d] =0, ! (6)
The roots are:

r;,r,=:tv, r,,r4=iv+2,

i

, [ ) ! 7
Tsy ey Tyy 13 = % [('Dz + Dty H]% + 2, 7

The values of rj (=1, 2, ..., 8) are all real. We see that the magnitude of
]rj| is comparable to the magnitude of v (in general the value of v is large),

which agrees with the previous assumption that m and v are of the same order of
magnitude. Using the condition that the coefficients of each exponent s are
zero, we obtain the coefficients st (the following are multiples of Cjo):

Cih=Cjy=Cj=Cjy=+++ = Cjps1 =0, (8)
= [Crybs=2) = (4 e — 207 + ] ,
pl(ri+sY—v* [ (rj+s—2P— P (rj+s—2)'"—2(2+1)(r;+s—2)2+4d])
. B
q
© Cjp—a + C.
Wi+ = PN s —2) — ] 9)
(‘=2:436’89109"°)s (i=192,""8). .

Since Cj,—l = Cj,-2 = ... = 0, we have

— {ri—ri+ el o
pl(rj + 20 — v 1[r} — ][ 7} — 2(+* + 1)r] + 4] Ciws 1 (10)

where, in this equation. C:0 is an undetermined constant. Then the solution of

C,‘z =

W(x) can be written as

8 L ] ]
W(x) = 330 cixitt =2 Cixifi(x) = > cizi(x, ‘1 (11)
i=1 !

J=1 £=0,2,4 i=1
Later on we shall use Cj G=1, 2, 3, ..., 8) as an arbitrary constant. There-
fore, the undetermined constant in fj(x) can be taken as 1 or any arbitrary
value. Because the difference between the indicial roots r, and Tqs as well
as between r, and Tys is 2, the vibrational mode functions Zl(x) and Z3(x),
Zz(x) and Z4(x) become linearly dependent. We must find two more independent
solutions.

According to the general theories of power series solutions and considering
the case rj = +v, we assume

Cp=dplr; + (—1)w] (j=1,2), | (12)




Using the symbol:

: di:=[rif(— 1)v] -g—"- (=1,25 s=0,2,4,"""), * (13)

70

four independent solutions can be written down

240x) = Za(x) log # -+ 'l 1 + dg? + it + o+ + diix' + o 1 }
Za(x) = Zy(=) log x + xdnlL-+ dx* + dor* + oo+ + P STRTS o | (14)
where
dom O (2 = — 25251 — R 4rilrl— (o + 1]
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1 2(r; + 2) .
+ i +
[r; — (— 1)iv] + [(r; +2)— v’]}] ) .
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— 2d;,,—a( 7 +~: —2D[2(r; +5s—2)*— 1]} -
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=20+ D)(r; +5s— 20 441} + ;
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q[; ‘{[(f,i+3)’-v’]+[(r,-+:——2)’—v’]}]+
+ {[(rj + ) — 21 (r; + 5 — 2)* — 2]}
(I=1’ 2)3 (-"=4’ 6,8, 10, 12:"'); . (16)
Z,(x) = d;ox"[duxz + dux’ + e + dux‘ + .- ’]s -
Z(x) = dpx™[dp® + daa* + - - +d:.rx'+‘“].} ‘ 17

r

We can also write Z3(x) = xr3f3(x) and ZA(X) = x 4f4(x), Because equation (11)

already contains the arbitrary constants c.(j3 =1, 2, 3, ..., 8), we shall make
' = ' = = = =

d 10 d 20 1 and C30 C40 C50 oo C

ity.

I &

80 = 1 without any loss of general-

Under certain conditions, v may be an integer. Z3(x) and ZA(X) again be-
come linearly dependent. In this case we must take

Z3(x) = dix ™ [ dppax®? + dypx™ + ¢~ logx +

d digr™ [ 1 + digx® + dyst + o + dyx* + fl' ] (18)

(when v is an integer)



in which d'40 is determined by Cho = d'40(rj + v - 2), where the procedure is

the same as when j = 1, 2, but taking j = 4, rj =-v+ 2, When s = 2v - 2,
2v, 2v + 2, ..., substitute (rj + v - 2) for [rj + (-l)Jv] in equations (13)

and (16). This is similar to the previous case of s = 2, 4, 6, ... However,
when s = 2, 4, 6, ..., 2v — 4, we should take d'4S = Cés/c40' The rest is the

same, and d' can also be assumed as unity.
9’ 40 y

When the Poisson ratio y = %3 we see that Igs Tgs Ty Tg = + v+ 3,

8
+ v+ 1, i.e., the indicial roots again differ by an integer 2. Because in
the series solution we only take even values of s, the functions ZS(X), ooy

ZS(X) are still independent.

According to Cauchy's criteria we know at once the series for the f. (x)

are convergent. However, the convergence is rather slow. Suppose we want to
calculate the value of fj(x) to 4 or 5 significant digits. We must take 10,

16, and 24 terms respectively at x = 2, 5, 10. The characteristic exponents
and variables of the series are very similer to Bessel functions for large
arguments.

For example, in Figure 1, the curve for f3(x) shows the properties of /140

the vibrational mode function. For clarity this figure uses two sets of scales.
The characteristic of the curve when
Xx > 5 is similar to that for x < 5,

s
~
-

. 7 which is a curve with variable period
2 . - and increasing amplitude. (For instance,
2
e'\,zw S when x = 5, 8, 10, ..., f,(x) = -2446.2,
3 , -85872, + 767000, ...). Because the
4Fb ) amplitude increases so fast that it is
400’ _ inconvenient for pletting, we have
“”ﬁ _ s ///,\\ - omitted that part of the figure. From
a;- ———g pi + this we see that fj(x) is a non-periodic
200 : R
s Ce oscillatory function with rapidly in-
o0 ‘ creasing amplitude. Its amplitude would
800 ‘ increase even faster after being multi-
: .
- J . . 3 .
Figure 1. plied by x I (and when rj is positive)

These properties can also be referred to

when choosing the pre-assumed vibration
mode function in calculating the approximate solutions. However, the slow con-
vergence of the series fj(x) greatly limits the practical usefulness of this

kind of solution. There are two ways to solve this problem. One is to find
an asymptotic expression from the mathematical viewpoint. The other is to
simplify the calculations from purely physical concepts. This shall be intro-
duced as follows.

10



From the lateral vibrational mode function W(x) and equations (4a) and (4b)
we find

Ux) = Z Z (A log = + A,,)x'i"" + Z Z Ay = Z CiXi(x),

j=1 $=0,2,4 i=3 2=0,2,4 i=1
(19)
V(z) = Z Z (Bj,logx + Bj)x"i** + Z Z Bjx"its = Z C;Yi(x),
i=1 s=0,24 =3 s=0,2,4 i=1

When v is an integer, the functions X3(x) and Y3(x) for j = 3 should contain

the term log x as in the case when j = 1, 2. The coefficient of the above
equation can be calculated from the following formula:

4 = C [I‘(fi+-f)""(r,-+:)'+ (W2 — p)(r; +5) _(122",)”2 +'1]
g ! tgal(r; + 5)' — 2(»* + 1)(r; + $)* + 4] " i

1e

tgal (r; + ) — 20 + 1)(r; + s)* + 4]
(I =1,2,3, *ee,8)y (s=2,4,6, 8,10, «++)

(20)

B;, = C;

(Note: when v is not an integer, for j = 3, 4, ..., 8, djs = st)
g = C{[pt+ P = G+ P+ G =)+ -

- (TZE——) v +1] dy, + [Sp(r; +sP—2(r; + )+
— i

+ (v — ) sy — 4Cr + O Cry + P — (0 + 1)] X

" [p(r,+.¢)’—(r;+;)’+(v"—P)("i+-f)—' (1 ?i‘ )”1.4,1] p .'}:, |
b

B
[(rs+ =200 4+ 1)(r; + s + 4]

""t8¢[(71+1‘)‘~'2(v’+1)(r,+s)‘+14], o _',\'; ST

. s (=)
‘B;, c,{v[ 2+ p)(rj + 0)? = ey )+ ‘b (21)

+ v — (1 z”y)]d}, + v[—- 22+ p)(ry+ ) —
400 =2
Q—p)
(A+p)(1—2p) , 2p
o[~ et TS b= =) o)
[Cri + 9 — 20 + 1)(r; + s)* + d] e
+igal(rj + ) — 200 + 1) (rj + )* + 4]

]dlt - 4("1 + -")[(fi + 5)? — (V+1)] %

(j= 1,2, and 3 -- when v is an integer)
(s= 0,2,4,6,8,...)

11



We see from the above equation, the series of Xj(x) and Yj(x) are also conver-

gent.

The general solution for the vibration of a conical shell is found by the
above method. The ratio between the eight constants Cj is determined by the

eight boundary conditions, and the eigenfrequencies can be found. The exact
solution can be obtained in this way. However, from the engineering view point,
the calculations are obviously too complicated, unless we use high speed compu-
tors. Therefore, we shall later introduce a simplified calculation method.

But we must first discuss the treatment of the boundary conditions at the ver-
tex of a whole conical shell.

4, Treatment of the Boundary Conditions at the Vertex

We already know that the thin shell theory equations are not valid in the
vicinity of the vertex of a whole conical shell. It has been stated previously
that the effect of the vertex on the characteristics of the conical shell as a
whole is very small. The boundary conditions involve the local displacements
and forces on the vertex, which warrant further discussion.

Usually there are two different cases when prescribing the boundary condi-
tions at the vertex: (a) Axial displacement or any displacements not allowed
(restricted vertex); (b) Axial displacement allowed (free vertex). For clarity,
we shall not discuss the case when arbitrary displacements are allowed, for
this case is basically similar to the free vertex case mentioned above.

[141

For case (a), note that only the axial displacement is restricted. Due to the

requirement that the displacement at the vertex should be single valued, we
also set

u=u=w=0,-@=0, at: x =0 (22)

Ox

which is equivalent to inelastic fixed end conditions. From the solutions of"
Zj(x) and Xj(x), the properties of Yj(x) can be obtained, where we must make
C2 = C4 = C6 = C8'= 0. Inthis case, in general, it is not necessary to consi-
der the correctness of the above solutions at the vertex because qualitative
results are sufficient. (As for the axisymmetric case when n = 0 or v = 0, we
must start from the form of the equations and the solutioms. This will be dis-
cussed elsewhere). Then the characteristic equations become a fourth order de-
terminant which is determined by the boundary conditions at the base.

For case (b), using the condition that the displacement of the vertex be
single valued, the boundary conditions are written as
a

At x = 0: w=urga, u=——a—-=0, N.cosa + Q.sina = 0j or P, (23)
* ) ‘

h

where Nx is the tension in the x direction, QX is the lateral force, and P is

the external force in the axial direction. Usually there is no outside force
at the vertex, so we shall take P = O from now on. Because of the inaccuracy

12



of the equations and the solutions near the vertex (in the vicinity of x = 0),
when making quantitative calculations, we should reconsider the treatment of
the boundary conditions. According to the previous result that the effect on
the characteristic values of the body as a whole is minute, owing to the com-
paratively small volume and energy of the region near the vertex, we suggest
that instead of applying the boundary conditions (23) at x = 0, we apply them
at x = xS:

w=utga, v=——=20,

Ox ‘
] - (24)

|
|
i

o7

2In 2
‘A = . L (Nycosa + Q,sina)risinadf = — r’m[-‘—a— (ucosa + wsina)
tx=x: N

P

X is a small value (compared to the total length xl). Its value is determined

by the generally accepted limit h/x tg a < 1/25 for the validity of the equations
of thin shell theory. We take

% =254/ga; |

where in equation (24) ms is the mass of the vertex region, m_ = (ph/g)ﬂxgsina.

This kind of treatment is reasonable. From the character of the vibrational
mode function (the product of xYj with the curve in Figure 1 and the vibrational
mode shown in Figure 4), we see than there is almost no strain in the vicinity
of the vertex. That is, the displacements of individual points in the vertex
region are almost exactly equal to the displacement of vertex itself (all zero
or some constant value). Therefore, we can regard the vertex region (the re-
gion whose length is xe) as inelastic. This is very similar to the substitu-

tion of the displacement at x = X, for the boundary condition at x = 0. At

the same time, we can simplify the last condition in equation (24), i.e., since
the vertex region is considered inelastic, we can reduce the integral; in addi-
tion, we neglect the small mass m_ and rewrite the condition as

at x = x_: N.cosa + Q,sina = 01,1

Expressed in terms of displacements, and using the assumption of inelasticity
on the other three conditions, the above equations can be written as

I
at x = x_: Ou _KHiga a(_____a’,y‘__’_l___a’w):o’, (25)
oxr 12 0x® x 0L ‘
2
or approximately written as %§-= 0, because bigsg is a small value, especially

when the angle o is small. Finally, the results from the application of thin
shell theory indicate the effect of an approximate boundary condition on the
characteristics of vibration is rather small. Therefore, the above suggested
treatment can be accepted. The solution to the problem is similar to that of
the truncated conical shell. Of course, as discussed in Section II, the above
considerations are not applicable to shells with very small cone angle

(0 < 5° - 10°) or very short stubby shells, In such a case we should in general

consider those as variable cross section beams and calculate the bending vibra-—
tions.

13



5. Simplified Calculations and the Parallel
Springs Concept

We have neglected the effects of the longitudinal and the circumferential
displacements u, v on the change of curvature and the torsional rate. Thus
the third equation in equations (1) contains the terms for the internal moments
due to bending and torsion, while the first and the second equations contain
only the terms for the internal forces due to membrane tension. This charac-
teristic implies that if we separate the vibration problem into two parts, i.e.,
using no-moment theory (membrane theory) and pure moment theory (equivalent to
thin plate bending theory), and combine the two, the calculations would be
greatly simplified. Pure bending theory means that we neglect the membrane re-
sistance and consider only the resistance to bending moments. The equation is
composed of the moment terms and the inertia terms in the third equation. This
form actually utilizes the concepts of thin plate bending theory (neglected
middle plane distortion — the displacements u, v) to compute the results for
the shell. Thus the calculations are very simple,

Now we explain the underlying physical concepts for the above simplified
method. Let us make a physical model for an arbitrary element on the shell:
separate the elastic restoring forces due to distortion into two separate por-—
tions, one is the membrane resistance, the other is the resistance to bending
moments. They are schematically represented by the springs 1 and 2 in the

following figure (the spring constants kl and k2 represent the elasticity of

the above two portions). The element of the shell
material is represented by the mass m in Figure 2.
Then we regard the whole shell as a system with infi-
nite degrees of freedom, i.e., composed of an infinite
number of these single-degree-of-freedom systems. The
spring constants are functions of the coordinates.

The differential equation (without damping) for /143
the parallel spring system shown in Figure 2 is

Figure 2.
b+ k= — m 2| (26)
, de’
Its eigenfrequency is
w= ___<k=:’<=>=‘/§+f=w/w:+w;, 27)

where Wy is the eigenfrequency of mass m with spring 1 alone, and Wy is the

eigenfrequency for mass m with spring 2 alone.

For a general elastic body, if its equations of motion can be written in
the form of equation (26), we have

Ki(€) + Ka(€) = M(g:f)‘, | (28)

where Kl(E)and Kz(i) are linear functions of the variable £ or its derivatives.
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. Then, under certain conditions, its eigenfrequency can be calculated in a manner
similar to equation (27). For instance, this method can calculate very accur-

ately(l) the natural frequency of a simply supported beam under tension T (addi-
tion of string vibration and lateral vibration of the beam).

Note that when the results for the vibrational mode function, which satisfy
all the boundary conditions, are exactly the same when derived from two entirely

(2)

different theories, then the solutions must be correct . One example is the
above mentioned horizontal beam problem. If the vibration modes are similar,

then very good approximate solutions can be obtained, such as in the case of

the circular cylindrical shell. 1In the case of the conical shell this is also
true. Because the solutions for both theories are in the form of power series
(similar characteristics), the vibration modes are similar. From this discussion,
we note that the physical model of the parallel springs system does describe the
actual situation, and the above simplification method can be used. We should
also point out that this method can be used to calculate other problems connec-
ted with the stability or vibration of shells in general.

Obviously, the above theory can also be explained in terms of energy. How-
ever, this will not be discussed in this paper.

According to this method, the problem can be decomposed into the following
two sets of equations:

Ou , 1 0u _u 14+p\ 1 &% _(3—=pup\ 1 0o
6’+x x’+( ( 80

Bx 2 /xsina Ox00 2 /2*sina 50
( 6’u+ w__. PAa_t-a=g(1—g)62
/Psin*a 0F x'tga xtga Ox ¢E o¢’
- \6’ (1—'#>L6_”,_f1—u\v . (1+u\ 1 & (29)
( 2 /o2 2 X Ox 2 .x’T . 2 Jrsina 6::60+, N
_'_(3-_—-;1)' 1 Qt_t_+, 1 080 __ _cosa Ow_ p(l—e)a’u
2 Psina 00  xisin*a 0F sin*a 00 g 8¢’
B _a.’.i.-}- " + _cosa 21_ w P(l .._pi) O
xtga Ox 2tiga  LPsin*a 08 Ptgla gE o¢’
VIV w ) + 12(’(1 —p') OSw =0 (30)
gER? o ’

(L

The equation of motion and the eigenfrequency of a simply supported beam
with tension are as follows:

O’y oy __,. 0 _n’lr"/El
T Y E et = """ 58 and =2 ml+m) (n=1,2,3, .

The equation of motion corresponds to equation (28). Here EI is the rigidi-
ty constant, and m is the mass per unit length. Calculating separately

ot oy - . . '

from T-a;,-p ma¥ and E’w=-m%:{_; we can obtain ““"1?%’\/;;'”"'”? =, from
which equation (27) can be shown to be satisfied. '
(2) The details of the proof shall be discussed in another paper.
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The solution of these equations shall be discussed in the following two [144
sections.

When using this method, we can divide the total boundary conditions (in
general eight) into two sets, corresponding to the two sets of separated equa-
tions. In the membrane theory calculations, the tangential component of the
displacements u, v in the middle plane must be satisfied on the boundaries
(four conditions). In the pure bending theory calculations, the lateral com-
ponent of the displacement w must be satisfied on the boundaries (four condi-
tions). Of course, this kind of treatment relaxes the restrictions, because in
the membrane theory calculations the lateral component of the displacement w
does not necessarily satisfy the total boundary conditions. But this discrepancy
is not large. Besides, in the bending theory, the arbitrariness of the boundary
conditions on u and v is also questionable. However, according to the character
of these separate calculations, these problems are all secondary, and should
not induce large errors., Furthermore, experience in thin shell theory research
tells us the effect due to slight boundary condition deviations is not large.
Thus the above treatment is acceptable.

To check the accuracy of the above method, we calculated the vibrational
characteristics of the case when a = 0, or the circular cvlindrical shell,
because there have been more studies for comparison in this case.

6. Calculation for the Vibration of a Circular
Cylindrical Shell

Using the above method, the calculations of the circular cylindrical shell
can be obtained from equations (29) and (30) by setting a = O:

( E)l O’u +(1+pl 0% __}‘_g_u_z_ae(l—g)a’

/a0 2 /a2 0x00 a O« gE as’ |!
(1—p)60+16u+(1+p>l 0% __1__§£=e(1.—p’)ﬁ’ 1
2 /062 OB 2 a 9x00 4* 00 g 8¢ [ (31)
PO 180w _ p(l—p)Puw L
a Ox a* 00 2 gE a:’ ;
12p(1 — g) &w
vivh L £ (32)
i) + GER o8

I. Membrane Theory Calculations

For simplicity, we still neglect the terms due to the tangential components
of the inertia forces. The solutions of u, v, w are assumed to be of the form:

u = U, (&) cos n0 sin wnt,

v = V(%) sin n0sin wyt, : (33)
w = Wy(x) cos n0sin w2,

Substitution into equation (31) and separation of the variables results in
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& & (34a)
' n &*W o,
V%,V.’.,Vl + (24 )5 dx‘ —a=0 (34b)
-}
4w lel__ -
i e 0, (34¢)
P | - - AN
where b= 2 &/(1 ): b,—--ﬂ (1 —M,*). Note that for the few lowest
v ! s —’—,2}- 4K,
order e1genfrequencies whlch are usually calculated, =~ gE " holds. We can
by =~ 202 POl 4o ms N ' ll— ———3§—~:> 100,
take E a KE Because in most cases a’pwmin ! ' we can even

1 /_—_:» 1!
consider a N pwi ’1 to be true. Thus the solution for Wl(x) is

‘Wy(x) = Cycoskyx + Cysinhx + Cychlyx + Cysh Az, (35)

It
l

where C;, C,, Cy, C, are undetermined constants, and l;“"ﬂ/ “B; ! From equa~

tions (34&) and (34b) we find U;(x) bl A,sinhx “+ A;cosl;x + A; sh llx + chh I,x,

Vi(8) = BjcosAx + BisinA;x + Bych djx + Bysh Ayx, r (36)

Ax} S sz{ ' As} — _ﬁ{cs
where Az R+ Cz A4 R~ Cq’
311__ ?u{C1 : Bal=__?]_34_{Ca
By Rilcy By RrR-lc, ] (37)
) L (TS  FL A (SR Ry
and 3 a whiF @’ g a! @+ P~), el
R+}=(A‘j:2f—2)sz+i) |
R_ ! a? ! a'/’ e

Using the corresponding boundary conditions for the membrane theory equations,
we can derive the characteristic equation and solve for the eigenfrequencies.
For instance, in the case of freely supported ends: at x =0 and x = &,

o=9% 0./ We find

Ox - (M_)’
o nl

We see that this is similar to the vibration of the simply supported beam. For

zE
ele

(m=1,2,3, " ).‘

(38)
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1}
<
I
>

the case when both ends are rigidly supported, at x = 0 and x = &, u
The characteristic equation is

1+—21-(Bx—%->sinhl°shlll= cosdyl ¢ ch Ay, _> . (39)
) .
— Suyu |

where .3,,;,,4"L From this we can calculate the eigenfrequencies.

The above results can only be applied to a few low order eigenfrequencies.
If we want to calculate the higher order eigenfrequencies, we must abandon the

R/ 2N gE ‘
assumption 7, pTo,’-»i and retain 72,1 >->1\‘,. Take

Wi(%) = Cicoshgx + Gysin A¢ + C; ch.l;x!-i- Cysh Ajx,

1

where

, |
,1;=,,‘/£ﬂ[l ez _ 1], M=”‘/E,,_;[_1_ ez 4],
gE La'¥ pw gE La ¥ pwy

We see that the above calculatioms are similar to the calculations of the /146
vibration of an elastic beam, which is relatively simple.

II. Pure Bending Theory Calculations

For the solution of equation (32), let w be of the form

w = Wy(x) cos nl sin w,e, 1 (40)
Substituting into equation (32) and separating the variables, we obtain
L . R !
Vi (v) — W, =0 (1 =220 ) 41)
2 !

The solution is

— -
Wg(x)=Acos‘/k§—ﬂz—x+Bsin‘/k§—-:—zx+ .
’ (42)

2 2
+'.Cchx/k§+§-2-x+Dsh‘/k§+-:—zx,
For the case when both ends are freely supported, where at x = 0 and x = £,
2 ’
w=0’6’w+ (62w +_L_ai)=0_’ 0u = 0;

3=  F"\;g@ T 400 £y ~we find |
mzét’z "I)J- Ebzg == 3 . ") ‘Y
== | ——— A — (m 1,2 ) . 43
“ ( r @120 — e v 5 (43)
For the case when both ends are rigidly supported, where at x = 0 and x = 2,
w = v _ 0, the characteristic equation is
9x
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1+—;—(B;——1—)sin‘/k§—f;-l-sh\/k}+§:—l=-
—-cos‘/kz—-——l ch‘/k,+—l ’[
where 3,=J(ﬂ+—§)/(b— )

frequency from the equation w==-vQﬂ-+a€h

(44)

From the solution of w, we can find the eigen-

We can see from the above analysis that the vibrational mode functions
derived from these two separate theories have the same character and form.
This agrees with the requirement of the calculation method. Besides, the charac-
teristic.equations under the corresponding boundary conditions are also similar.
Further note that when using this method the work required for the calculations
is equivalent to that for the vibrating elastic beam. Its simplicity is evident.

To check the accuracy of the eigenfrequency (u!==\/aﬂ-ku€)i calculated by
this method, we will apply the results to a specific example, and compare w1th
the existing research (Ref. 18 - 20).

Take a simply supported circular cylindrical shell with the following data:

=20 cmy, & = 54 cmy, h = 0,80 mm

= 2.0 x 106 Kg/cmz, olg = 7.95 x 10--6 Kg'seczlcma, u = 0.28.

For different values of n, the lowest (m = 1) frequencies (f = w/27m) are tabu-
lated as follows: [147

Method of Calculation and Eigenfrequency £ = w/2m (m = 1)

Experimental Results n=3n=4|n=5{n=61|n=28 |n=10

Theory of Arnold and Warburton

(Ref. 18) 530 329 258 - - -
Theory of Baron and Belich (Ref.

20) 504 320 241 235 - -
Theory of Brelavskiy - - 237 225 307 476

Experiments of Brelavskiy
- - 250 233 334 497
Present Theory 603 | 348 250 235 325 490

We see that the results from the above calculations are satisfactory, except
the case n = 3, where the difference is larger. This is probably due to the
fact that the error is larger in the thin shell theory when n is small. Note
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that the calculations of Baron and Bleich (Ref. 20) are based on a similar physi-
cal concept as the present paper., The difference is that the former uses an
energy method and solves for the solutions using the results from the membrane
theory as the approximate vibration mode, while the present paper uses analyti-
cal methods of two separate theories when seeking the solution. Since the re-
sults for the vibration mode are the same or similar, our method should be more
accurate (when n > 3).

7. Calculations for the Vibrations of a Conical Shell

I. Using the No-moment Theory (Membrane Theory)

For the solutions of equations (29), we also assume the answer is in the
form of equation (33). After separating the variables, and using the pre-
viously discussed assumptions and method of calculation, the following inde-
pendent equation for Wl(x) is obtained:

ANWY) — A W) + eW; — (1&—'“—% L(#W,) =0, (45)
. |
gi - P) w
where gE " The relationships between Ul’ Vl and Wl are expressed by

equations (4a) and (4b).

Let the solution Wl(x) be in the form of a power series:

Wx(#) = Z 2 cjite, (46)

J=1 sm0

Substitute into equation (45), and use the condition that the coefficients of
each power of the function be zero. The indices r, and c.  are then found.

L

3
From the definition of a series we have c, 1~ ¢ = (0. Therefore, when

Js-

j9_2
s = 0, we find

= s )= 6 30}
r ’a't'\’i—' 1+_"'-_L- T
i 102,304 P YT it1 Y 47)

when v is large (for example when a < 30°), and because Az >> 1, we can take

n=2a+, n=2a-0, n=—2a+n, n=-2a-»n, (48)
2 2 2 25
We continue to solve for the value of ¢, . We find ¢, = c,, = c¢c.. = ... =
js j1 j3 j5
c = 0, but
j,2s+1 ’ -
1,28 - itgla [(r,+s)‘—~2(v +1)(fi+3)2+d] L,
=) (ri+s)—(ri+s)+e o

(s=12,4,6,8, -*+), (49)

If we set the arbitrary constant c,, = 1, we can define the following function

3j0
' { - 2 AY@RERAY | :
o ase =1k BT SEESECRGEE @

. #=D4,6
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x Lxiga) Re(F,,) + i - Im(F,), (50) 1148

(1 — py? - (cont.)
Then the lateral vibrational mode function Wl(x) can be written as cj
L]
Wi(x) = Z c,x’lF,,.(v, +Qitga), (51)

=1
where cj is an undetermined constant (in general complex). The convergence of

Frj can be determined from the Cauchy criteria

lim [(r; + ) — 200 + 1)(r; +5)* + d](x.Ql tga) _ (0 tga)? (52)
£-%00 » (ri+ sy —(r; +5)2+e 1 —pw») A—p)’

) -
When Lri g o)? <1, the function Frj is convergent, From the calculations, this

(1 —p»
requirement is satisfied for most low-order eigenfrequencies. Because usually
it is not necessary to calculate the higher order eigenfrequencies, the above
solutions are sufficient for practical purposes. If we only want the first two
lowest order frequencies, the above series converges so fast that two or three
terms already result in three-digit accuracy. This is the main advantage of
such a method. It avoids the difficulties encountered in solving for the exact
solutions and therefore possesses a certain practical value.

After Wl(x) is found, it is not difficult to obtain Ul(x) and Vl(x):

4

Us(2) = 3 c;a1G, (v, xQ1tg a),

i=1

: ; 1 5
Vl(x) = Z c,-x'lH,,(v, x.Ql tg a), ( 3)
where ' =1
3 2 2 2p
_ 1 pr;—-r,+(v—p)r,—(l_p)v’+1\ ’
G”,(-”’ *dig a) E{[ =2+ 1l +d +
" i [ p(r,+:)3—(ri+:)1+(vz-—p)(‘r,-+:)‘—( lz_l‘“)vl-!-l }x
m2,4,6 (r; + )t — 200" + 1)("i +s)P+4d
x [[[(t =268 Dt o 4 o) GO ay]
(rit+s)H—(ri+s)P+e A — p)”?
=Re(G,) + i - Im(G,,),
14+ 1— :
H,(v,x9:tga) = — {["(Zﬂz),;_( (’;)(— P)ZF) ritv'— lzfﬂ '
r, ¥ tga) = —
/ g g a r1—200+ i+ d + (54)
P [—(2 +"Xr’_+’)z (1 '(l'll"?-(_l "")ZF)(",__*_‘)_*_ p? — (._2}.)]
+ > . 1—p) |«
Sle (ri+s) =20+ D(r;j+s5)P+d
% H [(r,- + ' — 200+ D(r; + )+ d] (xQitga) | _
(ri+ s —(r;+s5)+e 1 — p?)”?
= Re(H,)) + i Im(H,)), . J
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Obviously both series are convergent. Applying the boundary conditions to the
solution, a characteristic equation can be obtained (in general, a fourth-order
determinant) from which we can solve for the eigenfrequencies. There are four
boundary conditions when using the no-moment theory for a truncated conical

shell. These are represented by the displacements u, v or the temsion. For /149
example, in the case when both ends are fixed, we have

at x = x, and x = X, u=v= 0.

0

For a whole conical shell, we must take ¢y = = 0.

We must point out that since r, and Tys I'g and r, are complex conjugates,

the following conjugate relationship between the vibrational mode functions can
be proven:
RC(F'1)=RC(F':)’ Re(F,')=Re(F,‘), Im(F,1)=—Im(F,’), Im(F,,)=—Im( Fr;);
Re( Gq)=Re( Gr,), Re( Gr.) =Re( Gr‘) s Im( Gr‘) = —Im( Gr,) ) Im( Gr.) = —Im( G")_; (55)
RC(H,1)=RC(H,.) ’ RC(H,.)"——' Re(Hr‘) ’ Im(Hr1)= —Im(Hr.) > [m(Hr.)= _Im(Hr.)

These conjugate relationships greatly simplify the calculations of the functions
and also simplify the solutions of the characteristic equations.

II. Using Pure Moment Theory (Bending Theory) .

It is easy to see that solving equation (30) will be much simpler than when
-using membrane theory. The solution is still g Bessel function. The solution
for the lateral displacement w is also assumed to be in the form of equation (40).
Substituting into equation (30) we have

(W) = p,
x'\ &/ \"Mids OY
43 1 d ( v‘)][ & 1 d ?
—_—t == - = e X =
[dx’ x dx k x2 x‘+ x dx (k + x’)]Wz 0 (56)
The solution is _
Wi(x) = A1, (kx) + BY,(kx) + CL(kx) + DK,(kx), (57)

where Jv(kx), Yv(kx), Iv(kx), Kv(kx) are Besses functions of order v. The

boundary conditions are similar to those for the bending of a thin plate, e.g.

for fixed edges at x = X and x = Xy, W= = 0,
for simply supported edges: at x = Xq and x = Xy, W= MX = 0,
for free edges: at x = X and x = Xqy» QX = Mx = 0.

For the restriction of the vertex in the case of a whole shell, we should
take B = D = 0. w, can be found from the characteristic equation. Finally,

2
. . . 2 2 2
the eigenfrequencies are obtained from w = Wy o Wye

22



8. A Practical Example and Discussions

In the following we shall calculate the eigenfrequencies and the vibration
mode of a whole conical shell with o = 30°. We shall then compare with the
experimental results and discuss them. The data are taken to be as follows:

o = 30°, x. = 30 cmy, h = 0.33, 0.71 and 1.64 mm,

1
E=2,05x 106 Kg/cmz, olg = 7.95 x 10_6 Kg-secz/cm4, u = 0.30.

Consider the case when a restricted vertex and a fixed base are the boun-
dary conditions. Using the method developed in the two previous sections, we
calculate the lowest few eigenfrequencies corresponding ton =3, 4, 5, ..., 8.
The results are shown in Figure 3 (where Wy and wz(w'z, w"z) are the results

from no-moment theory and pure moment theory respectively, and w(w',w") is the
y P y P Y s

final combined answer). We see that Wy varies inversely as a function of n,

while Wy is just the opposite. This is to be expected. The number n which

corresponds to the lowest eigenfrequency varies with the shell thickness (or the
ratio between shell thickness and the diameter). When the other dimensions are
the same, then the larger the h, the smaller the n, which corresponds to the
lowest frequency. This is because from no-moment theory, wy is independent of

the thickness h, but from pure moment theory w, is proportional to h.

2

: . From Figure 3, we notice that, when /150
8 Lo vibrating under the lowest eigenfrequency,
3: o — the effect of membrane tension (or the
§,F \\\\\_ ° ‘/://// o corresponding strain energy) is just
+ X T equal to the effect of the moments, for
3 , = . both curves of w, and w, are concave,
2} 9. 4 1 2
i - ) . . o ‘ This rule may be of some value in general
= 3 4 T, T I shell research, for it is obviously not
limited to conical shells and can be
Figure 3. applied to general shells.
w' —- basic frequency for a We made some experiments to check
h = 0.71 mm shell; w" -- basic the results. The shell is made from thin
frequency for a h = 0.33 mm shell; plates and shaped on a mold. The sean
—-- experimental results for is percussively welded (until the shell
w'; 3 -- experimental results is watertight), and the specimen has a
for w". specific degree of imperfection. The

bottom is welded to a thick flange.

The vertex and the bottom are both attached
firmly to a frame. The vibrations are induced both by the inertia activation
method and by the electromagnet activation method. The results by the two methods
are essentially similar, as shown in Figure 3. We see that agreement between
theory and the experiments are generally good. According to the basic concepts
of shell theory, shell imperfections like initial curvature do not greatly
affect its characteristics, at least when the value of n is large. This is
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because the initial curvature has definite effects on the membrane effect (de-
creases its effect, but not very much), but has no effect on the pure bending
effect. The experimental results in Figure 3 are a little low for small n, which
verifies this prediction. Therefore, we can at least use the experiments to
check the accuracy of the calculations at large n.

Figure 4 shows the vibration mode
solutions from the no-moment theory and
the pure moment theory when n = 5
{(corresponds to the lowest w'). Their
characteristics are similar but their
form is not the same. Therefore, the
results are approximate and the values
are lower than the exact solution. From
the physical view point, the difference
of these two vibration modes means relaxed
Figure 4. restraints. In addition, the boundary

conditions are reduced, so we predict the

results are on the low side. This con-
clusion can also be proven mathematically, which will not be discussed here.
From the predictions and the preliminary experimental results, we expect the
actual vibration mode lies between the two curves in Figure 4. The exact
situation still requires further study. The accuracy of the calculations is
obviously related to the similarities of the two vibration modes. However,
from the above example and the previous calculations for other vibration prob-
lems, the effect is not large —— i.e., although the similarities are poor, it
does not mean there are very large errors (in general, smaller than 10 - 20%,
but sometime may reach 30%Z). We should note that the present method is similar
to the concepts of the Dunkerley method, which is well known in the calculations
of the vibration of many degree of freedom systems. Thus, the order of magnitude
of the error should also be similar (i.e., the results are accurate although the
vibration modes differ). Also note that the form of the vibration mode of a
whole conical shell is quite different, and the error tends to be on the large
side, while for truncated conical shells, the vibration modes are very similar
from the two theories, and the results are more correct.

Of the existing theories, only the research of Federhofer (Ref. 2) is able
to calculate the above example. He calculated the lowest value of w to be
12000, which when h = 1.64, corresponds to n = 3, The present theory obtains
7040 and corresponds to n = 4 (or 3). The difference is not small. We already
know that the present results are on the low side. But Federhofer uses a sym-

2
-f) , which is far from reality.
Xy

metric vibrational mode function :x’(l-—
Therefore, his results from the Rayleigh-~Ritz method are obviously much larger.

We should also point out that the results usually are much larger when we attempt

to solve directly with an approximate form of a power function which consists /151
of few terms. For example, in the study of the stability of conical shells,

the results of Ryayamet (Ref. 21) are 50 — 80% larger [see (Ref. 22)]. The

author also encountered this situation in other vibrational calculations. This
problem should be studied further, both theoretically and experimentally.
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Finally, we point out that our methods of decomposing the equations, if
advanced mathematically, can be used to improve the similarity of the vibra-
tion modes and also the accuracy of the calculations. This area needs further
study.

. Comrades Tu Ching-Hua, Lo Tsu-Dao and the other comrades who attended the
October, 1962, Plates and Shells Conference have given many valuable opinions.
Comrade Yang Shao-Chi helped check the calculations. The author is deeply
grateful to them.

REFERENCES

1. Strutt, M. J. 0. Eigen oscillations of a conical shell, Annalen der Physik
5, 17, 729-735, 1933.

2. Federhofer, K. Eigen oscillations of a conical shell, Ingenieur-Archiv, 9
288-309, 1938.

3. Pfluge, A. Stability of thin conical shells, Ingenieur-Archiv, 8, 3, 1937.

4, Trapezin, I. I. Small oscillations in a circular, thin~walled, conical shell.
Raschet na prochnost', No. 2, 334-341, 1958.

5. Trapezin, I. I. Oscillations of a circular, thin-walled conical shell.
Raschet na prochnost', No 4, 363-373, 1959.

6. Herrmann, G., Mirsky, I. On vibrations of conical shells. Journal of

Aero/space Sciences, 25, 7, 451-458, 1958.

7. Alumyae, N. On the basic system of the integration of the equations of small
vibrations in the axisymmetric stability problem of an elastic rotating
conical shell. Mechanical Digest (Elasticity) 1, 14, 1962.

8. Mushtari, Kh. M., Sachenkov, A. V. Stability of cylindrical and conical
shells with a circular cross section during the concurrent action of axial
contraction and external normal pressure. Prikladnaya Matematika i
Mekhanika, 18, 6, 667-674, 1954.

9. Hoff, N. J. Thin circular conical shells under arbitrary loads, Jour. Appl.
Mech., 557-562, 1955.

10. Hoff, N. J., Singer, J. Buckling of circular conical shells under external

pressure, Proc. Symposium on Thin Elastic Shells (I.U.T.A.M.), 389-414, 1960.

11. Seide, P. Asymmetrical bending and buckling of thin conical shells, Jour.
Appl. Mech., 24, 547-552, 1957.

12. Seide, P. On the buckling of truncated conical shells under uniform hydro-
static pressure, Proc. Symposium on Thin Elastic Shells (I.U.T.A.M.),
363-388, 1960.

13. Bunich, L. M., Paliy, O0.M., Piskovitina, I.A. Stability of a Truncated
Conical Shell under the influence of uniform external pressure.
Inzhenernyy Sbornik, Vol. XXIII, 89-92, 1956.

1l4. Trapezin, I. I. Critical loading and eigen oscillations of a structurally
orthotropic, conical shell, closed at the apex, loaded with a uniform
hydrostatic pressure. Prochnost' Aviatsiovnykh Konstruktsiy, 5-18, 1960.

15. Vlasov, V. Z. Obshchaya Teoriya obolochek (General Shell Theory), 1949.

16. Vlasov, V. Z. Nekotoryye zadachi soprotivleniya materialov, stroitel'noy
mekhaniki, Teorii uprugosti (Certain problems in the resistance of
materials, structural mechanics, and the elasticity theory). (Chinese
edition available, translated by Hu Hai-Chang 1954).

17. Love, A. E. H. A Treatise on the mathematical theory of Elasticity, 4th

25



18.

19.

20.

21.

22,

23.

‘ NASA TT F-11,017

ed., 1944.

Arnold, R. N., Warburtom, G. B. The flexural vibrations of thin cylinders,
The Institution of Mechanical Engineers, Proceedings (A), 167, 1, 62-74,
1953.

Breslavskiy, V. Ye. Oscillations of cylindrical shells. Inzhenernyy
Sbornik, Vol. XVI, 109-118, 1953,

Baron, M. L., Bleich, H. H. Tables for frequencies and modes of free
vibration of infinitely long thin cylindrical shells, Jour. Appl. Mech.,
76, 178~188, 1954.

Ryayemet, R. K. Critical loading of a conical shell under the influence
of uniformly distributed external pressure. Trudy Tallinskogo
Politekhnicheskogo Instituta, No. 66, 1955.

Trapezin, I. I. Stability of a thin-walled conical shell, closed at the
apex, loaded by lateral hydrostatic pressure. Raschet na prochnost',
No. 5, 249-258, 1960.

Grigolyuk, E. I. Stability of a closed, two-layer conical shell under the
influence of uniform, normal pressure. Inzhenernyy Sbornik, Vol. XIX,
73-82, 1954,

Scientific Translation Service
4849 Tocaloma Lane

La Canada, California
NASw-1496

26



